• Гродненская IT-Academy рассказала, как создаются нейросети и почему искусственный интеллект не вытеснит человеческий

    Гродненская IT-Academy рассказала, как создаются нейросети и почему искусственный интеллект не вытеснит человеческий

    «Нейросети показали, как бы выглядел Гарри Поттер в Африке» - новость, которая начинается примерно так, Вы наверняка видели много раз в социальных сетях и на различных сайтах. Пожалуй, именно дизайнерский талант искусственного интеллекта на сегодняшний день наиболее известен широкой аудитории.

    Гораздо меньше людей знает, что искусственный интеллект сегодня используется практически везде и вполне успешно пишет песни, шутки, тексты новостей и статей на различную тематику, создаёт видеоролики.

    Кстати, статья, которую Вы сейчас читаете вполне могла бы быть написана нейросетью и Вам было бы сложно отличить текст, от текста, написанного человеком. 

    Но главное – искусственный интеллект научился программировать. Последние версии популярного чат-бота ChatGPT действительно способны эффективно писать код.

    Представьте, что будет если искусственный интеллект сможет самостоятельно создавать и распространять новые версии себя? В голову сразу приходят «Терминатор: Восстание машин» и «Мстители. Эра Альтрона». Сценарий может быть самым невероятным, но… пока он очень далек от истины и скорее всего вообще невозможен.

    Для управления искусственным интеллектом и его обучения по-прежнему нужен человек. Нейросети по-прежнему не могут принимать спонтанные и нелогичные решения и по-прежнему не могут работать без референса.

    Впрочем, давайте вернёмся назад и поговорим о том, что же такое искусственный интеллект и откуда он взялся.

    Как и зачем появился искусственный интеллект?

    История самого понятия искусственного интеллекта уходит корнями ещё в 17 век – философы того времени уже задумывались о механистичности природы, поэтому вполне могли допустить, что мышление – прерогатива не только человека. 

    В 19 веке учёные, в числе которых была и мать программирования Ада Лавлейс, уже работали над созданием машин, который будут подчиняться определённым алгоритмам.

    Уже в 1943 году Уоррен Мак-Каллок и Уолтер Питтс предложили понятие искусственной нейронной сети, правда то исследование было по большей части связано с психологией.

    Возможно, Вы слышали про тест Тьюринга или смотрели фильм «Игра в имитацию» с Бенедиктом Камбербэтчем? Алан Тьюринг – британский математик, который создал вычислительную машину «Энигма» и который в 1950-м году издал работу, посвящённую отличительным чертам мышления человека и машины. Суть заключалась в том, что, отвечая на вопросы, машина будет пытаться ввести в заблуждение того, кто с ней взаимодействует, имитируя человеческое поведение.

    Сможет ли человек определить, какой интеллект с ним взаимодействует: искусственный или натуральный? Сегодня этот вопрос становится всё более актуальным.

    Искусственный интеллект как научное направление возник в 1956 году, благодаря четырём американским ученым: Джону Мак-Карти, Марвину Мински, Натаниэлю Рочестеру и Клоду Шеннону, которые провели летний семинар, посвящённый компьютерному моделированию различных способностей интеллекта.

    В 1960-е годы ИИ играл в шахматы, а в 1990-е уже выигрывал в них у чемпиона мира. Затем появилось такое направление, как Machine Learning (машинное обучение) – обучение компьютера без непосредственных инструкций с использованием математических моделей данных. При таком способе определяются закономерности, которые ложатся в основу модели данных, которая начинает обрабатывать данные. Со временем модель становится более ёмкой и точной – именно так развивается искусственный интеллект.

    Проще говоря, нейросети обучаем мы. Ведь в качестве данных для обработки они используют действия, которые мы совершаем в интернете. Ищете что-то в Google? Листайте Instagram? Заказываете такси в Яндекс Go? Нейросети собирают все эти действия, обрабатывают и строят прогнозы.

    В 2010-е годы обучение нейронных сетей вышло на новый уровень – появилось такое направление, как Deep Learning (глубокое обучение). Если в Machine learning алгоритм обработки данных задавал программист, то в Deep Learning нейронная сеть определяет его самостоятельно методом проб и ошибок.

    Кажется, что до Альтрона уже недалеко?

    На самом деле объединять роботов и искусственный интеллект начали уже в 90-х. Сегодня некоторые человекоподобные роботы демонстрируют по-настоящему впечатляющие результаты: они могут не только отвечать на вопросы, но и шутить, реагировать на юмор собеседника, подражать мимике людей и многое другое.

    Так что фантастика кажется всё более реальной.

    Avengers Age of Ultron: Crazy Theory #2 The Vision didn't kill Ultron!

    В каких сферах применяется искусственный интеллект и почему он всё-таки не заменит людей?

    …Вернее заменит, но только тех, кто не сможет перестроиться под новое время. Искусственный интеллект сильнее человека в логике и математике – это очевидный факт. Самые сильные шахматисты не могут переиграть компьютер, самые лучшие математики не способны считать или строить математические модели так быстро, как нейронные сети.

    Нейросети хороши в написании текст, ведь они не допускают грамматических и пунктуационных ошибок и чётко выстраивают повествовании, и в дизайне, ведь там всё так же подчиняется определённым параметрам: пропорции, цветовые палитры – всё это поддается логическому анализу.

    Искусственный интеллект сегодня выступает не только средством развлечения и создания контента в интернете. Он успешно применяется, например, в медицине. Медицинские гаджеты, основанные на искусственном интеллекте, достаточно точно диагностируют различные болезни и умело подбирают нужные рекомендации даже в таких сложных областях, как исследование головного мозга.

    Всё те же человекоподобные роботы уже сейчас могут ассистировать при сложных хирургических операциях и вполне вероятно, что в ближайшем будущем они даже смогут проводить их самостоятельно.

    Не менее эффективно данные технологии применяются и в сферах промышленности, производства. Искусственный интеллект может прогнозировать различные поломки, вносить корректировки в производственный процесс, делая его более эффективным, автоматизировать целые производственные участки и строить оптимальные модели добычи полезных ископаемых.

    Если Вы любите футбол или другие виды спорта, то наверняка слышали о системах автоматического определения гола – в их основе тоже лежат алгоритмы.

    Нейронные сети действительно эффективнее человека во многих сферах, но… всё же заменить человеческий разум искусственным интеллектом полностью невозможно.

    Основные причины этого лежат в двух плоскостях:

    • генерация идей;

    • принятие решений.

    Работа искусственного интеллекта полностью основана на референсах. Иными словами, не имея необходимого источника данных нейронная сеть не сможет создать что бы то ни было – ей нужно на чём-то основываться. 

    И здесь мы можем видеть сразу две причины, которые подтверждают, что нейросети не справятся без человека: во-первых, человек может создать идею с нуля. Конечно, сегодня большинство человеческих изобретений и инноваций основаны на прошлом опыте, но в целом способность и желание создавать – черта, которая отличает человека от машины. Во-вторых, правильный референс для обучения нейронной сети по-прежнему задаёт человек. Самостоятельно машины пока не способны определять область и диапазон данных, на которых им нужно обучаться. Если они будут выбирать массивы данных без участия человека, вероятность ошибки возрастёт в тысячи и даже миллионы раз.

    Поэтому можно сказать, что любой искусственный интеллект – это просто усовершенствованный опыт человека, который его создал. Этим объясняется и то, что машины тоже могут ошибаться, хоть в их случае вероятность ошибки и существенно ниже, чем в случае с человеком.

    Что касается принятия решений, то каждый человек наверняка сталкивался с ситуацией, когда правильный выбор оказывался не самым логичным. Так вот искусственный интеллект в любой ситуации будет принимать решение, основанное на логике, потому что он так устроен. Человек же может делать выбор, полагаясь на то, что кто-то называет интуицией, а кто-то 6-м чувством.

    Исходя из этого можно не сомневаться, что последнее слово всё равно останется за человеком. Однако, нейросети могут существенно упростить труд многих людей, избавив от рутинной работы и позволив тем самым сконцентрироваться только на творческой.

    Заменить же полностью искусственный интеллект сможет разве что людей, которые занимаются сугубо механической работой и не хотят развиваться.

    Как создаются нейронные сети?

    Нейронная сеть – это код. Набор символом объединённых в команды, формулы, циклы и алгоритмы. Нейронные сети создаются программистами, которые используются для этого различные современные инструменты.

    Чаще всего термины Machine Learning и Big Data ассоциируются с языком программирования Python. И не зря: именно на Python написан ChatGPT, именно Python используется для сбора «больших данных» крупными IT-корпорациями, вроде Google, Facebook и Instagram.

    Такие компании создают собственные фреймворки и библиотеки по работе с нейросетями – технологии, упрощающие создание подобных алгоритмов.  Например, команда разработчиков Googler создала библиотеку TensorFlow, а программисты Facebook разработали ещё один популярный фреймворк – PyTorch.

    Python используется в создании чат-ботов и нейронных сетей, потому что по своему синтаксису он проще других мощных технологий, а потому позволяет с меньшими усилиями задавать сложные алгоритмы для обработки больших объёмов данных.

    Можно ли создавать нейросети на Java? Да, безусловно. Java – мощный язык, который вполне успешно применяется для создания нейронных сетей, решений в сфере машинного обучения, генетического программирования и многого другого. Для работы в этих областях используются инструменты Apache Jena, Neuroph, Apache OpenNLP, Java-ML. Java – язык, который предоставляет хорошие возможности масштабирования проектов, поэтому он используется для создания, например, роботов, задействованных в научных исследованиях или промышленности. 

    Microsoft не остался в стороне и также создал собственную бесплатную открытую библиотеку машинного обучения – ML.net. Это говорит о том, что языки C# и C++ тоже подходят для создания нейронных сетей и проектов, связанных с машинным обучением. Для использования понадобится овладеть библиотекой DataView. Учитывая мощный ресурс Microsoft, можно предположить, что этот инструмент будет развиваться и в будущем станет одной из самых мощных технологий в данной области. 

    С помощью библиотеки ruby-fann (ответвления библиотеки FANN – Fast Artificial Neural Network, разработанной на языке С) работать с нейросетями можно и на языке программирования Ruby.

    Ещё один популярный язык JavaScript для работы с искусственным интеллектом использует адаптированную библиотеку TensorFlow.js. С её помощью модели машинного обучения можно запускать прямо в браузере.

    В целом для работы с нейросетями может подойти любой язык программирования, однако лучше всего для этих целей, конечно, подходят такие мощные языки, как Python и Java, чем и объясняется их популярность.

    Как подчинить нейросети, чтобы в будущем они не подчинили тебя?

    Для начала стоит попробовать поработать с популярными нейронными сетями вроде Midjourney и ChatGPT. Эти инструменты просты в использовании, но, чтобы они работали по-настоящему эффективно, необходимо грамотно писать промты – тексты, которые дают искусственному интеллекту команду для выполнения той или иной задачи.

    Например, если Ваша задача состоит в написании текста, то важно сразу задать размер (к примеру, от 300 до 500 символов), дать нейросети пример («текст в стиле Льва Толстого»), задать тон или написать от чьего лица этот текст. Чем больше важных деталей Вы конкретизируете, тем выше вероятность, что на выходе получится то, что Вам нужно.

    Поработав с популярными нейросетями, Вы поймёте их логику, благодаря в чему в дальнейшем Вам будет проще осваивать это направления. 

    Ну а если Вы хотите обеспечить себе успешное будущее в мире «восстания машин», то самым правильным решением будет изучить какой-либо из языков программирования уже сейчас. 

    Сделать это можно в IT-Academy, где курсы по Java, Python, C#, JavaScript, Ruby ведут профессионалы из IT-компаний.

    Вот список ближайших стартов курсов по программированию для начинающих в IT-Academy:

    19/03 – Программирование на Ruby: начальный уровень, онлайн

    20/03 – Основы Computer Science, очно или онлайн

    15/04 – Комплексный курс по разработке веб-приложений на Python, онлайн

    18/04 – Разработка веб-сайтов с использованием HTML, CSS и JavaScript, онлайн

    22/04 – Программирование на Java, онлайн

    24/04 – Программирование на C#, онлайн

    17/05 – Основы веб-технологий, очно или онлайн.

    Записаться на курсы в Гродно можно на сайте IT-Academy и по телефону +375 33 900 44 44,

    +375 44 749 22 22.


    Читайте по теме:


    Комментирование записи закрыто!

  • По условиям аукциона, покупатель обязуется реконструировать здание под гостиницу или мотель.

    Машину снимут с учета для утилизации при отсутствии в регистрационном подразделении информации, подтверждающей ее эксплуатацию в течение не менее одного года. Ранее было – не менее трех лет.

    Ранее, в августе 2023 года, собственник баржи был привлечен к административной ответственности.

    Очевидцы говорят, что виновник ДТП не был трезв. Но точку в этом вопросе покажет официальная проверка.

    Мужчина занимался ремонтом телевизоров, хотя имел право чинить только компьютеры с ноутбуками.

    Мужчина поднял с земли камень, разбил им дверь, а в доме повредил мебель.

    Стоит ли весенняя Турция таких денег? По данным Gismeteo, на этой неделе днем на побережье очень тепло и комфортно — до 25—27 градусов. А вот ночи пока прохладные.

    Все новости